
A Weather Forecast App using the OpenWeatherMap API -how it aligns with your syllabus:

 UNIT I: Spring Boot Basics & Project Structure

• Setting up project using Maven or Gradle

• Creating a basic Spring Boot application

• Understanding the @SpringBootApplication annotation

• Managing configuration with application.properties

 Covered when students initialize the Spring Boot project and configure API keys and endpoints.

 UNIT II: RESTful Services

• Creating REST Controllers to fetch and display weather data

• Using annotations like @RestController, @GetMapping, @RequestParam

• Consuming REST APIs using RestTemplate or WebClient

 Students consume OpenWeatherMap REST API, parse responses, and serve data via their own API

endpoints.

 UNIT III: Data Persistence & Security

• Save search history or user preferences using Spring Data JPA

• Use an embedded database like H2 or connect to MySQL/PostgreSQL

• Implement basic Spring Security (e.g., user login to store preferences securely)

 Students learn CRUD operations, data relationships, and simple login functionality.

 UNIT IV: Microservices & WebFlux

• Optional: Break the app into microservices (one for weather, another for user settings)

• Use WebClient for reactive API calls

• Implement Spring Boot testing with @WebMvcTest and @DataJpaTest

 Stretch goal: add reactive programming with WebFlux and basic actuator endpoints.

 UNIT V: Reactive Persistence (Optional/Advanced)

• Save reactive data using MongoDB or Cassandra if going for a fully reactive version

• Use Spring Data MongoDB to store weather logs

 This can be offered as an optional enhancement for advanced students.

 Course Outcomes (COs) Mapping

• CO1: Understanding Spring Boot → Setting up app and dependencies

• CO2: Developing RESTful services → Fetching/displaying weather data

• CO3: JPA and Security → User preferences, authentication

• CO4: Reactive APIs → Use WebClient, test reactive components

• CO5: Reactive persistence → Optional if MongoDB is used

 Enhancement Ideas

• Add JWT authentication for advanced security.

• Create a dashboard UI using Thymeleaf or React (optional).

• Implement caching using Spring Cache for repeated weather queries.

• Add unit & integration tests for controllers and services.

